The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  2  X  2  X  0  X  0  X  X  X X^2+2  X X^2  X X^2+2  X X^2+2  X  X  X  X  X  2  X X^2  0 X^2+2  X  X  1  1  1  1 X^2  X  X  1  X  X X^2  X  X
 0  X  0 X^2+X+2 X^2 X^2+X X^2+2  X  0 X^2+X+2  0 X^2+X X^2  X X^2+2  X  2 X^2+X+2  2 X^2+X  2 X^2+X+2  2 X^2+X X^2+2 X+2 X^2 X+2 X^2+2 X+2 X^2 X+2 X^2+X  X X^2+X  X X^2+X+2  X X^2+X+2  X  2 X^2  X  X X+2  X  X  X  X  X  0 X^2+2 X^2+X+2 X^2+X+2 X+2  X X^2+X  X  X  X X+2  X  0 X^2+2  2  2 X^2+2 X^2+X X^2+2  2 X^2  2  2 X^2+X+2 X^2+2
 0  0 X^2+2 X^2 X^2  2  2 X^2+2  2 X^2+2 X^2  0 X^2+2 X^2  0  2  2  2 X^2 X^2+2  0  0 X^2+2 X^2 X^2+2 X^2+2  2  0 X^2 X^2  0  2  0 X^2  2 X^2+2 X^2  0 X^2+2  2 X^2 X^2 X^2  0  0 X^2  2 X^2+2 X^2+2  2 X^2 X^2  2  0 X^2+2  0 X^2+2  2 X^2+2 X^2  2  0  0  0  2 X^2 X^2 X^2 X^2+2  0  2 X^2+2 X^2 X^2+2  0

generates a code of length 75 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 73.

Homogenous weight enumerator: w(x)=1x^0+164x^73+27x^74+160x^75+26x^76+94x^77+4x^78+24x^79+2x^80+4x^81+2x^84+2x^85+1x^88+1x^98

The gray image is a code over GF(2) with n=600, k=9 and d=292.
This code was found by Heurico 1.16 in 0.75 seconds.